Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DistPrivacy: Privacy-Aware Distributed Deep Neural Networks in IoT surveillance systems (2010.13234v1)

Published 25 Oct 2020 in cs.NI and cs.DC

Abstract: With the emergence of smart cities, Internet of Things (IoT) devices as well as deep learning technologies have witnessed an increasing adoption. To support the requirements of such paradigm in terms of memory and computation, joint and real-time deep co-inference framework with IoT synergy was introduced. However, the distribution of Deep Neural Networks (DNN) has drawn attention to the privacy protection of sensitive data. In this context, various threats have been presented, including black-box attacks, where a malicious participant can accurately recover an arbitrary input fed into his device. In this paper, we introduce a methodology aiming to secure the sensitive data through re-thinking the distribution strategy, without adding any computation overhead. First, we examine the characteristics of the model structure that make it susceptible to privacy threats. We found that the more we divide the model feature maps into a high number of devices, the better we hide proprieties of the original image. We formulate such a methodology, namely DistPrivacy, as an optimization problem, where we establish a trade-off between the latency of co-inference, the privacy level of the data, and the limited-resources of IoT participants. Due to the NP-hardness of the problem, we introduce an online heuristic that supports heterogeneous IoT devices as well as multiple DNNs and datasets, making the pervasive system a general-purpose platform for privacy-aware and low decision-latency applications.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube