Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Improved Sketching Algorithm for Edit Distance (2010.13170v3)

Published 25 Oct 2020 in cs.DS

Abstract: We provide improved upper bounds for the simultaneous sketching complexity of edit distance. Consider two parties, Alice with input $x\in\Sigman$ and Bob with input $y\in\Sigman$, that share public randomness and are given a promise that the edit distance $\mathsf{ed}(x,y)$ between their two strings is at most some given value $k$. Alice must send a message $sx$ and Bob must send $sy$ to a third party Charlie, who does not know the inputs but shares the same public randomness and also knows $k$. Charlie must output $\mathsf{ed}(x,y)$ precisely as well as a sequence of $\mathsf{ed}(x,y)$ edits required to transform $x$ into $y$. The goal is to minimize the lengths $|sx|, |sy|$ of the messages sent. The protocol of Belazzougui and Zhang (FOCS 2016), building upon the random walk method of Chakraborty, Goldenberg, and Kouck\'y (STOC 2016), achieves a maximum message length of $\tilde O(k8)$ bits, where $\tilde O(\cdot)$ hides $\mathrm{poly}(\log n)$ factors. In this work we build upon Belazzougui and Zhang's protocol and provide an improved analysis demonstrating that a slight modification of their construction achieves a bound of $\tilde O(k3)$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.