Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Neuron Merging: Compensating for Pruned Neurons (2010.13160v1)

Published 25 Oct 2020 in cs.CV and cs.AI

Abstract: Network pruning is widely used to lighten and accelerate neural network models. Structured network pruning discards the whole neuron or filter, leading to accuracy loss. In this work, we propose a novel concept of neuron merging applicable to both fully connected layers and convolution layers, which compensates for the information loss due to the pruned neurons/filters. Neuron merging starts with decomposing the original weights into two matrices/tensors. One of them becomes the new weights for the current layer, and the other is what we name a scaling matrix, guiding the combination of neurons. If the activation function is ReLU, the scaling matrix can be absorbed into the next layer under certain conditions, compensating for the removed neurons. We also propose a data-free and inexpensive method to decompose the weights by utilizing the cosine similarity between neurons. Compared to the pruned model with the same topology, our merged model better preserves the output feature map of the original model; thus, it maintains the accuracy after pruning without fine-tuning. We demonstrate the effectiveness of our approach over network pruning for various model architectures and datasets. As an example, for VGG-16 on CIFAR-10, we achieve an accuracy of 93.16% while reducing 64% of total parameters, without any fine-tuning. The code can be found here: https://github.com/friendshipkim/neuron-merging

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.