Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

LIRO: Tightly Coupled Lidar-Inertia-Ranging Odometry (2010.13072v1)

Published 25 Oct 2020 in cs.RO, cs.SY, and eess.SY

Abstract: In recent years, thanks to the continuously reduced cost and weight of 3D Lidar, the applications of this type of sensor in robotics community have become increasingly popular. Despite many progresses, estimation drift and tracking loss are still prevalent concerns associated with these systems. However, in theory these issues can be resolved with the use of some observations to fixed landmarks in the environments. This motivates us to investigate a tightly coupled sensor fusion scheme of Ultra-Wideband (UWB) range measurements with Lidar and inertia measurements. First, data from IMU, Lidar and UWB are associated with the robot's states on a sliding windows based on their timestamps. Then, we construct a cost function comprising of factors from UWB, Lidar and IMU preintegration measurements. Finally an optimization process is carried out to estimate the robot's position and orientation. Via some real world experiments, we show that the method can effectively resolve the drift issue, while only requiring two or three anchors deployed in the environment.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube