Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Neural Language Modelling with Syllables (2010.12881v1)

Published 24 Oct 2020 in cs.CL

Abstract: LLMling is regularly analysed at word, subword or character units, but syllables are seldom used. Syllables provide shorter sequences than characters, they can be extracted with rules, and their segmentation typically requires less specialised effort than identifying morphemes. We reconsider syllables for an open-vocabulary generation task in 20 languages. We use rule-based syllabification methods for five languages and address the rest with a hyphenation tool, which behaviour as syllable proxy is validated. With a comparable perplexity, we show that syllables outperform characters, annotated morphemes and unsupervised subwords. Finally, we also study the overlapping of syllables concerning other subword pieces and discuss some limitations and opportunities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Arturo Oncevay (10 papers)
  2. Kervy Rivas Rojas (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.