Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Differentially Private Online Submodular Maximization (2010.12816v1)

Published 24 Oct 2020 in cs.LG, cs.CR, and cs.DS

Abstract: In this work we consider the problem of online submodular maximization under a cardinality constraint with differential privacy (DP). A stream of $T$ submodular functions over a common finite ground set $U$ arrives online, and at each time-step the decision maker must choose at most $k$ elements of $U$ before observing the function. The decision maker obtains a payoff equal to the function evaluated on the chosen set, and aims to learn a sequence of sets that achieves low expected regret. In the full-information setting, we develop an $(\varepsilon,\delta)$-DP algorithm with expected $(1-1/e)$-regret bound of $\mathcal{O}\left( \frac{k2\log |U|\sqrt{T \log k/\delta}}{\varepsilon} \right)$. This algorithm contains $k$ ordered experts that learn the best marginal increments for each item over the whole time horizon while maintaining privacy of the functions. In the bandit setting, we provide an $(\varepsilon,\delta+ O(e{-T{1/3}}))$-DP algorithm with expected $(1-1/e)$-regret bound of $\mathcal{O}\left( \frac{\sqrt{\log k/\delta}}{\varepsilon} (k (|U| \log |U|){1/3})2 T{2/3} \right)$. Our algorithms contains $k$ ordered experts that learn the best marginal item to select given the items chosen her predecessors, while maintaining privacy of the functions. One challenge for privacy in this setting is that the payoff and feedback of expert $i$ depends on the actions taken by her $i-1$ predecessors. This particular type of information leakage is not covered by post-processing, and new analysis is required. Our techniques for maintaining privacy with feedforward may be of independent interest.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.