Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improving Multilingual Models with Language-Clustered Vocabularies

Published 24 Oct 2020 in cs.CL and cs.LG | (2010.12777v1)

Abstract: State-of-the-art multilingual models depend on vocabularies that cover all of the languages the model will expect to see at inference time, but the standard methods for generating those vocabularies are not ideal for massively multilingual applications. In this work, we introduce a novel procedure for multilingual vocabulary generation that combines the separately trained vocabularies of several automatically derived language clusters, thus balancing the trade-off between cross-lingual subword sharing and language-specific vocabularies. Our experiments show improvements across languages on key multilingual benchmark tasks TyDi QA (+2.9 F1), XNLI (+2.1\%), and WikiAnn NER (+2.8 F1) and factor of 8 reduction in out-of-vocabulary rate, all without increasing the size of the model or data.

Citations (61)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.