Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

X-TaSNet: Robust and Accurate Time-Domain Speaker Extraction Network (2010.12766v1)

Published 24 Oct 2020 in eess.AS

Abstract: Extracting the speech of a target speaker from mixed audios, based on a reference speech from the target speaker, is a challenging yet powerful technology in speech processing. Recent studies of speaker-independent speech separation, such as TasNet, have shown promising results by applying deep neural networks over the time-domain waveform. Such separation neural network does not directly generate reliable and accurate output when target speakers are specified, because of the necessary prior on the number of speakers and the lack of robustness when dealing with audios with absent speakers. In this paper, we break these limitations by introducing a new speaker-aware speech masking method, called X-TaSNet. Our proposal adopts new strategies, including a distortion-based loss and corresponding alternating training scheme, to better address the robustness issue. X-TaSNet significantly enhances the extracted speech quality, doubling SDRi and SI-SNRi of the output speech audio over state-of-the-art voice filtering approach. X-TaSNet also improves the reliability of the results by improving the accuracy of speaker identity in the output audio to 95.4%, such that it returns silent audios in most cases when the target speaker is absent. These results demonstrate X-TaSNet moves one solid step towards more practical applications of speaker extraction technology.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.