Papers
Topics
Authors
Recent
2000 character limit reached

Anchor-based Bilingual Word Embeddings for Low-Resource Languages (2010.12627v2)

Published 23 Oct 2020 in cs.CL

Abstract: Good quality monolingual word embeddings (MWEs) can be built for languages which have large amounts of unlabeled text. MWEs can be aligned to bilingual spaces using only a few thousand word translation pairs. For low resource languages training MWEs monolingually results in MWEs of poor quality, and thus poor bilingual word embeddings (BWEs) as well. This paper proposes a new approach for building BWEs in which the vector space of the high resource source language is used as a starting point for training an embedding space for the low resource target language. By using the source vectors as anchors the vector spaces are automatically aligned during training. We experiment on English-German, English-Hiligaynon and English-Macedonian. We show that our approach results not only in improved BWEs and bilingual lexicon induction performance, but also in improved target language MWE quality as measured using monolingual word similarity.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.