Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Origins of Algorithmic Instabilities in Crowdsourced Ranking (2010.12571v1)

Published 23 Oct 2020 in cs.SI and cs.HC

Abstract: Crowdsourcing systems aggregate decisions of many people to help users quickly identify high-quality options, such as the best answers to questions or interesting news stories. A long-standing issue in crowdsourcing is how option quality and human judgement heuristics interact to affect collective outcomes, such as the perceived popularity of options. We address this limitation by conducting a controlled experiment where subjects choose between two ranked options whose quality can be independently varied. We use this data to construct a model that quantifies how judgement heuristics and option quality combine when deciding between two options. The model reveals popularity-ranking can be unstable: unless the quality difference between the two options is sufficiently high, the higher quality option is not guaranteed to be eventually ranked on top. To rectify this instability, we create an algorithm that accounts for judgement heuristics to infer the best option and rank it first. This algorithm is guaranteed to be optimal if data matches the model. When the data does not match the model, however, simulations show that in practice this algorithm performs better or at least as well as popularity-based and recency-based ranking for any two-choice question. Our work suggests that algorithms relying on inference of mathematical models of user behavior can substantially improve outcomes in crowdsourcing systems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.