Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Concealed Data Poisoning Attacks on NLP Models (2010.12563v2)

Published 23 Oct 2020 in cs.CL

Abstract: Adversarial attacks alter NLP model predictions by perturbing test-time inputs. However, it is much less understood whether, and how, predictions can be manipulated with small, concealed changes to the training data. In this work, we develop a new data poisoning attack that allows an adversary to control model predictions whenever a desired trigger phrase is present in the input. For instance, we insert 50 poison examples into a sentiment model's training set that causes the model to frequently predict Positive whenever the input contains "James Bond". Crucially, we craft these poison examples using a gradient-based procedure so that they do not mention the trigger phrase. We also apply our poison attack to language modeling ("Apple iPhone" triggers negative generations) and machine translation ("iced coffee" mistranslated as "hot coffee"). We conclude by proposing three defenses that can mitigate our attack at some cost in prediction accuracy or extra human annotation.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.