Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GiBERT: Introducing Linguistic Knowledge into BERT through a Lightweight Gated Injection Method (2010.12532v1)

Published 23 Oct 2020 in cs.CL

Abstract: Large pre-trained LLMs such as BERT have been the driving force behind recent improvements across many NLP tasks. However, BERT is only trained to predict missing words - either behind masks or in the next sentence - and has no knowledge of lexical, syntactic or semantic information beyond what it picks up through unsupervised pre-training. We propose a novel method to explicitly inject linguistic knowledge in the form of word embeddings into any layer of a pre-trained BERT. Our performance improvements on multiple semantic similarity datasets when injecting dependency-based and counter-fitted embeddings indicate that such information is beneficial and currently missing from the original model. Our qualitative analysis shows that counter-fitted embedding injection particularly helps with cases involving synonym pairs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.