Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GiBERT: Introducing Linguistic Knowledge into BERT through a Lightweight Gated Injection Method (2010.12532v1)

Published 23 Oct 2020 in cs.CL

Abstract: Large pre-trained LLMs such as BERT have been the driving force behind recent improvements across many NLP tasks. However, BERT is only trained to predict missing words - either behind masks or in the next sentence - and has no knowledge of lexical, syntactic or semantic information beyond what it picks up through unsupervised pre-training. We propose a novel method to explicitly inject linguistic knowledge in the form of word embeddings into any layer of a pre-trained BERT. Our performance improvements on multiple semantic similarity datasets when injecting dependency-based and counter-fitted embeddings indicate that such information is beneficial and currently missing from the original model. Our qualitative analysis shows that counter-fitted embedding injection particularly helps with cases involving synonym pairs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.