Papers
Topics
Authors
Recent
2000 character limit reached

Few-shot Decoding of Brain Activation Maps (2010.12500v3)

Published 23 Oct 2020 in cs.LG

Abstract: Few-shot learning addresses problems for which a limited number of training examples are available. So far, the field has been mostly driven by applications in computer vision. Here, we are interested in adapting recently introduced few-shot methods to solve problems dealing with neuroimaging data, a promising application field. To this end, we create a neuroimaging benchmark dataset for few-shot learning and compare multiple learning paradigms, including meta-learning, as well as various backbone networks. Our experiments show that few-shot methods are able to efficiently decode brain signals using few examples, which paves the way for a number of applications in clinical and cognitive neuroscience, such as identifying biomarkers from brain scans or understanding the generalization of brain representations across a wide range of cognitive tasks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.