Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Divide and Conquer: One-Bit MIMO-OFDM Detection by Inexact Expectation Maximization (2010.12492v2)

Published 23 Oct 2020 in cs.IT, eess.SP, and math.IT

Abstract: Adopting one-bit analog-to-digital convertors (ADCs) for massive multiple-input multiple-output (MIMO) implementations has great potential in reducing the hardware cost and power consumption. However, distortions caused by quantization raise great challenges. In MIMO orthogonal frequency-division modulation (OFDM) detection, coarse quantization renders the orthogonal separation among subcarriers inapplicable, forcing us to deal with a problem that has a very large problem size. In this paper we study the expectation-maximization (EM) approach for one-bit MIMO-OFDM detection. The idea is to iteratively decouple the MIMO-OFDM detection problem among subcarriers. Using the perspective of block coordinate descent, we describe inexact variants of the classical EM method for providing more flexible and computationally efficient designs. Simulation results are provided to illustrate the potential of the divide-and-conquer strategy enabled by EM.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.