Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Exponential ReLU Neural Network Approximation Rates for Point and Edge Singularities (2010.12217v1)

Published 23 Oct 2020 in math.NA, cs.LG, and cs.NA

Abstract: We prove exponential expressivity with stable ReLU Neural Networks (ReLU NNs) in $H1(\Omega)$ for weighted analytic function classes in certain polytopal domains $\Omega$, in space dimension $d=2,3$. Functions in these classes are locally analytic on open subdomains $D\subset \Omega$, but may exhibit isolated point singularities in the interior of $\Omega$ or corner and edge singularities at the boundary $\partial \Omega$. The exponential expression rate bounds proved here imply uniform exponential expressivity by ReLU NNs of solution families for several elliptic boundary and eigenvalue problems with analytic data. The exponential approximation rates are shown to hold in space dimension $d = 2$ on Lipschitz polygons with straight sides, and in space dimension $d=3$ on Fichera-type polyhedral domains with plane faces. The constructive proofs indicate in particular that NN depth and size increase poly-logarithmically with respect to the target NN approximation accuracy $\varepsilon>0$ in $H1(\Omega)$. The results cover in particular solution sets of linear, second order elliptic PDEs with analytic data and certain nonlinear elliptic eigenvalue problems with analytic nonlinearities and singular, weighted analytic potentials as arise in electron structure models. In the latter case, the functions correspond to electron densities that exhibit isolated point singularities at the positions of the nuclei. Our findings provide in particular mathematical foundation of recently reported, successful uses of deep neural networks in variational electron structure algorithms.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube