2000 character limit reached
    
  Translating Recursive Probabilistic Programs to Factor Graph Grammars (2010.12071v1)
    Published 22 Oct 2020 in cs.PL and cs.LG
  
  Abstract: It is natural for probabilistic programs to use conditionals to express alternative substructures in models, and loops (recursion) to express repeated substructures in models. Thus, probabilistic programs with conditionals and recursion motivate ongoing interest in efficient and general inference. A factor graph grammar (FGG) generates a set of factor graphs that do not all need to be enumerated in order to perform inference. We provide a semantics-preserving translation from first-order probabilistic programs with conditionals and recursion to FGGs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.