Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MTAG: Modal-Temporal Attention Graph for Unaligned Human Multimodal Language Sequences (2010.11985v2)

Published 22 Oct 2020 in cs.CL, cs.CV, cs.LG, and cs.MM

Abstract: Human communication is multimodal in nature; it is through multiple modalities such as language, voice, and facial expressions, that opinions and emotions are expressed. Data in this domain exhibits complex multi-relational and temporal interactions. Learning from this data is a fundamentally challenging research problem. In this paper, we propose Modal-Temporal Attention Graph (MTAG). MTAG is an interpretable graph-based neural model that provides a suitable framework for analyzing multimodal sequential data. We first introduce a procedure to convert unaligned multimodal sequence data into a graph with heterogeneous nodes and edges that captures the rich interactions across modalities and through time. Then, a novel graph fusion operation, called MTAG fusion, along with a dynamic pruning and read-out technique, is designed to efficiently process this modal-temporal graph and capture various interactions. By learning to focus only on the important interactions within the graph, MTAG achieves state-of-the-art performance on multimodal sentiment analysis and emotion recognition benchmarks, while utilizing significantly fewer model parameters.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube