Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Few-Shot Adaptation of Generative Adversarial Networks (2010.11943v1)

Published 22 Oct 2020 in cs.CV

Abstract: Generative Adversarial Networks (GANs) have shown remarkable performance in image synthesis tasks, but typically require a large number of training samples to achieve high-quality synthesis. This paper proposes a simple and effective method, Few-Shot GAN (FSGAN), for adapting GANs in few-shot settings (less than 100 images). FSGAN repurposes component analysis techniques and learns to adapt the singular values of the pre-trained weights while freezing the corresponding singular vectors. This provides a highly expressive parameter space for adaptation while constraining changes to the pretrained weights. We validate our method in a challenging few-shot setting of 5-100 images in the target domain. We show that our method has significant visual quality gains compared with existing GAN adaptation methods. We report qualitative and quantitative results showing the effectiveness of our method. We additionally highlight a problem for few-shot synthesis in the standard quantitative metric used by data-efficient image synthesis works. Code and additional results are available at http://e-271.github.io/few-shot-gan.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.