Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Brain-Inspired Learning on Neuromorphic Substrates (2010.11931v1)

Published 22 Oct 2020 in cs.NE and cs.LG

Abstract: Neuromorphic hardware strives to emulate brain-like neural networks and thus holds the promise for scalable, low-power information processing on temporal data streams. Yet, to solve real-world problems, these networks need to be trained. However, training on neuromorphic substrates creates significant challenges due to the offline character and the required non-local computations of gradient-based learning algorithms. This article provides a mathematical framework for the design of practical online learning algorithms for neuromorphic substrates. Specifically, we show a direct connection between Real-Time Recurrent Learning (RTRL), an online algorithm for computing gradients in conventional Recurrent Neural Networks (RNNs), and biologically plausible learning rules for training Spiking Neural Networks (SNNs). Further, we motivate a sparse approximation based on block-diagonal Jacobians, which reduces the algorithm's computational complexity, diminishes the non-local information requirements, and empirically leads to good learning performance, thereby improving its applicability to neuromorphic substrates. In summary, our framework bridges the gap between synaptic plasticity and gradient-based approaches from deep learning and lays the foundations for powerful information processing on future neuromorphic hardware systems.

Citations (77)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.