Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Shape related constraints aware generation of Mechanical Designs through Deep Convolutional GAN (2010.11833v1)

Published 22 Oct 2020 in cs.CE

Abstract: Mechanical product engineering often must comply with manufacturing or geometric constraints related to the shaping process. Mechanical design hence should rely on robust and fast tools to explore complex shapes, typically for design for additive manufacturing (DfAM). Topology optimization is such a powerful tool, yet integrating geometric constraints (shape-related) into it is hard. In this work, we leverage machine learning capability to handle complex geometric and spatial correlations to integrate into the mechanical design process geometry-related constraints at the conceptual level. More precisely, we explore the generative capabilities of recent Deep Learning architectures to enhance mechanical designs, typically for additive manufacturing. In this work, we build a generative Deep-Learning-based approach of topology optimization integrating mechanical conditions in addition to one typical manufacturing condition (the complexity of a design i.e. a geometrical condition). The approach is a dual-discriminator GAN: a generator that takes as input the mechanical and geometrical conditions and outputs a 2D structure and two discriminators, one to ensure that the generated structure follows the mechanical constraints and the other to assess the geometrical constraint. We also explore the generation of designs with a non-uniform material distribution and show promising results. Finally, We evaluate the generated designs with an objective evaluation of all wanted aspects: the mechanical as well as the geometrical constraints.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube