A 4-Approximation of the $\frac{2π}{3}$-MST (2010.11571v1)
Abstract: Bounded-angle (minimum) spanning trees were first introduced in the context of wireless networks with directional antennas. They are reminiscent of bounded-degree spanning trees, which have received significant attention. Let $P = {p_1,\ldots,p_n}$ be a set of $n$ points in the plane, let $\Pi$ be the polygonal path $(p_1,\ldots,p_n)$, and let $0 < \alpha < 2\pi$ be an angle. An $\alpha$-spanning tree ($\alpha$-ST) of $P$ is a spanning tree of the complete Euclidean graph over $P$, with the following property: For each vertex $p_i \in P$, the (smallest) angle that is spanned by all the edges incident to $p_i$ is at most $\alpha$. An $\alpha$-minimum spanning tree ($\alpha$-MST) is an $\alpha$-ST of $P$ of minimum weight, where the weight of an $\alpha$-ST is the sum of the lengths of its edges. In this paper, we consider the problem of computing an $\alpha$-MST, for the important case where $\alpha = \frac{2\pi}{3}$. We present a simple 4-approximation algorithm, thus improving upon the previous results of Aschner and Katz and Biniaz et al., who presented algorithms with approximation ratios 6 and $\frac{16}{3}$, respectively. In order to obtain this result, we devise a simple $O(n)$-time algorithm for constructing a $\frac{2\pi}{3}$-ST\, ${\cal T}$ of $P$, such that ${\cal T}$'s weight is at most twice that of $\Pi$ and, moreover, ${\cal T}$ is a 3-hop spanner of $\Pi$. This latter result is optimal in the sense that for any $\varepsilon > 0$ there exists a polygonal path for which every $\frac{2\pi}{3}$-ST has weight greater than $2-\varepsilon$ times the weight of the path.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.