Papers
Topics
Authors
Recent
2000 character limit reached

Fast-Rate Loss Bounds via Conditional Information Measures with Applications to Neural Networks (2010.11552v3)

Published 22 Oct 2020 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: We present a framework to derive bounds on the test loss of randomized learning algorithms for the case of bounded loss functions. Drawing from Steinke & Zakynthinou (2020), this framework leads to bounds that depend on the conditional information density between the the output hypothesis and the choice of the training set, given a larger set of data samples from which the training set is formed. Furthermore, the bounds pertain to the average test loss as well as to its tail probability, both for the PAC-Bayesian and the single-draw settings. If the conditional information density is bounded uniformly in the size $n$ of the training set, our bounds decay as $1/n$. This is in contrast with the tail bounds involving conditional information measures available in the literature, which have a less benign $1/\sqrt{n}$ dependence. We demonstrate the usefulness of our tail bounds by showing that they lead to nonvacuous estimates of the test loss achievable with some neural network architectures trained on MNIST and Fashion-MNIST.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.