Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Knowledge Distillation for BERT Unsupervised Domain Adaptation (2010.11478v2)

Published 22 Oct 2020 in cs.CL

Abstract: A pre-trained LLM, BERT, has brought significant performance improvements across a range of natural language processing tasks. Since the model is trained on a large corpus of diverse topics, it shows robust performance for domain shift problems in which data distributions at training (source data) and testing (target data) differ while sharing similarities. Despite its great improvements compared to previous models, it still suffers from performance degradation due to domain shifts. To mitigate such problems, we propose a simple but effective unsupervised domain adaptation method, adversarial adaptation with distillation (AAD), which combines the adversarial discriminative domain adaptation (ADDA) framework with knowledge distillation. We evaluate our approach in the task of cross-domain sentiment classification on 30 domain pairs, advancing the state-of-the-art performance for unsupervised domain adaptation in text sentiment classification.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.