Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Runtime vs Scheduler: Analyzing Dask's Overheads (2010.11105v1)

Published 21 Oct 2020 in cs.DC

Abstract: Dask is a distributed task framework which is commonly used by data scientists to parallelize Python code on computing clusters with little programming effort. It uses a sophisticated work-stealing scheduler which has been hand-tuned to execute task graphs as efficiently as possible. But is scheduler optimization a worthwhile effort for Dask? Our paper shows on many real world task graphs that even a completely random scheduler is surprisingly competitive with its built-in scheduler and that the main bottleneck of Dask lies in its runtime overhead. We develop a drop-in replacement for the Dask central server written in Rust which is backwards compatible with existing Dask programs. Thanks to its efficient runtime, our server implementation is able to scale up to larger clusters than Dask and consistently outperforms it on a variety of task graphs, despite the fact that it uses a simpler scheduling algorithm.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.