Papers
Topics
Authors
Recent
2000 character limit reached

On Explaining Decision Trees (2010.11034v1)

Published 21 Oct 2020 in cs.LG and cs.AI

Abstract: Decision trees (DTs) epitomize what have become to be known as interpretable ML models. This is informally motivated by paths in DTs being often much smaller than the total number of features. This paper shows that in some settings DTs can hardly be deemed interpretable, with paths in a DT being arbitrarily larger than a PI-explanation, i.e. a subset-minimal set of feature values that entails the prediction. As a result, the paper proposes a novel model for computing PI-explanations of DTs, which enables computing one PI-explanation in polynomial time. Moreover, it is shown that enumeration of PI-explanations can be reduced to the enumeration of minimal hitting sets. Experimental results were obtained on a wide range of publicly available datasets with well-known DT-learning tools, and confirm that in most cases DTs have paths that are proper supersets of PI-explanations.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.