Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Balance Maximization in Signed Networks via Edge Deletions (2010.10991v1)

Published 21 Oct 2020 in cs.SI

Abstract: In signed networks, each edge is labeled as either positive or negative. The edge sign captures the polarity of a relationship. Balance of signed networks is a well-studied property in graph theory. In a balanced (sub)graph, the vertices can be partitioned into two subsets with negative edges present only across the partitions. Balanced portions of a graph have been shown to increase coherence among its members and lead to better performance. While existing works have focused primarily on finding the largest balanced subgraph inside a graph, we study the network design problem of maximizing balance of a target community (subgraph). In particular, given a budget $b$ and a community of interest within the signed network, we aim to make the community as close to being balanced as possible by deleting up to $b$ edges. Besides establishing NP-hardness, we also show that the problem is non-monotone and non-submodular. To overcome these computational challenges, we propose heuristics based on the spectral relation of balance with the Laplacian spectrum of the network. Since the spectral approach lacks approximation guarantees, we further design a greedy algorithm, and its randomized version, with provable bounds on the approximation quality. The bounds are derived by exploiting pseudo-submodularity of the balance maximization function. Empirical evaluation on eight real-world signed networks establishes that the proposed algorithms are effective, efficient, and scalable to graphs with millions of edges.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.