High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds (2010.10904v3)
Abstract: Despite the recent success of Bayesian optimization (BO) in a variety of applications where sample efficiency is imperative, its performance may be seriously compromised in settings characterized by high-dimensional parameter spaces. A solution to preserve the sample efficiency of BO in such problems is to introduce domain knowledge into its formulation. In this paper, we propose to exploit the geometry of non-Euclidean search spaces, which often arise in a variety of domains, to learn structure-preserving mappings and optimize the acquisition function of BO in low-dimensional latent spaces. Our approach, built on Riemannian manifolds theory, features geometry-aware Gaussian processes that jointly learn a nested-manifold embedding and a representation of the objective function in the latent space. We test our approach in several benchmark artificial landscapes and report that it not only outperforms other high-dimensional BO approaches in several settings, but consistently optimizes the objective functions, as opposed to geometry-unaware BO methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.