Papers
Topics
Authors
Recent
2000 character limit reached

Deep Reinforcement Learning in Lane Merge Coordination for Connected Vehicles (2010.10567v1)

Published 20 Oct 2020 in cs.LG and cs.RO

Abstract: In this paper, a framework for lane merge coordination is presented utilising a centralised system, for connected vehicles. The delivery of trajectory recommendations to the connected vehicles on the road is based on a Traffic Orchestrator and a Data Fusion as the main components. Deep Reinforcement Learning and data analysis is used to predict trajectory recommendations for connected vehicles, taking into account unconnected vehicles for those suggestions. The results highlight the adaptability of the Traffic Orchestrator, when employing Dueling Deep Q-Network in an unseen real world merging scenario. A performance comparison of different reinforcement learning models and evaluation against Key Performance Indicator (KPI) are also presented.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.