Supertagging-based Parsing with Linear Context-free Rewriting Systems (2010.10238v1)
Abstract: We present the first supertagging-based parser for LCFRS. It utilizes neural classifiers and tremendously outperforms previous LCFRS-based parsers in both accuracy and parsing speed. Moreover, our results keep up with the best (general) discontinuous parsers, particularly the scores for discontinuous constitutents are excellent. The heart of our approach is an efficient lexicalization procedure which induces a lexical LCFRS from any discontinuous treebank. It is an adaptation of previous work by M\"orbitz and Ruprecht (2020). We also describe a modification to usual chart-based LCFRS parsing that accounts for supertagging and introduce a procedure for the transformation of lexical LCFRS derivations into equivalent parse trees of the original treebank. Our approach is implemented and evaluated on the English Discontinuous Penn Treebank and the German corpora NeGra and Tiger.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.