Coherent Hierarchical Multi-Label Classification Networks (2010.10151v1)
Abstract: Hierarchical multi-label classification (HMC) is a challenging classification task extending standard multi-label classification problems by imposing a hierarchy constraint on the classes. In this paper, we propose C-HMCNN(h), a novel approach for HMC problems, which, given a network h for the underlying multi-label classification problem, exploits the hierarchy information in order to produce predictions coherent with the constraint and improve performance. We conduct an extensive experimental analysis showing the superior performance of C-HMCNN(h) when compared to state-of-the-art models.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.