Papers
Topics
Authors
Recent
2000 character limit reached

Tracking from Patterns: Learning Corresponding Patterns in Point Clouds for 3D Object Tracking (2010.10051v1)

Published 20 Oct 2020 in cs.CV and cs.AI

Abstract: A robust 3D object tracker which continuously tracks surrounding objects and estimates their trajectories is key for self-driving vehicles. Most existing tracking methods employ a tracking-by-detection strategy, which usually requires complex pair-wise similarity computation and neglects the nature of continuous object motion. In this paper, we propose to directly learn 3D object correspondences from temporal point cloud data and infer the motion information from correspondence patterns. We modify the standard 3D object detector to process two lidar frames at the same time and predict bounding box pairs for the association and motion estimation tasks. We also equip our pipeline with a simple yet effective velocity smoothing module to estimate consistent object motion. Benifiting from the learned correspondences and motion refinement, our method exceeds the existing 3D tracking methods on both the KITTI and larger scale Nuscenes dataset.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.