Papers
Topics
Authors
Recent
2000 character limit reached

Training Generative Adversarial Networks via stochastic Nash games (2010.10013v3)

Published 17 Oct 2020 in cs.LG, cs.GT, and math.OC

Abstract: Generative adversarial networks (GANs) are a class of generative models with two antagonistic neural networks: a generator and a discriminator. These two neural networks compete against each other through an adversarial process that can be modeled as a stochastic Nash equilibrium problem. Since the associated training process is challenging, it is fundamental to design reliable algorithms to compute an equilibrium. In this paper, we propose a stochastic relaxed forward-backward (SRFB) algorithm for GANs and we show convergence to an exact solution when an increasing number of data is available. We also show convergence of an averaged variant of the SRFB algorithm to a neighborhood of the solution when only few samples are available. In both cases, convergence is guaranteed when the pseudogradient mapping of the game is monotone. This assumption is among the weakest known in the literature. Moreover, we apply our algorithm to the image generation problem.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.