Papers
Topics
Authors
Recent
2000 character limit reached

A Concentration of Measure Framework to study convex problems and other implicit formulation problems in machine learning (2010.09877v2)

Published 19 Oct 2020 in math.PR and stat.ML

Abstract: This paper provides a framework to show the concentration of solutions $Y*$ to convex minimizing problem where the objective function $\phi(X)(Y)$ depends on some random vector $X$ satisfying concentration of measure hypotheses. More precisely, the convex problem translates into a contractive fixed point equation that ensure the transmission of the concentration from $X$ to $Y*$. This result is of central interest to characterize many machine learning algorithms which are defined through implicit equations (e.g., logistic regression, lasso, boosting, etc.). Based on our framework, we provide precise estimations for the first moments of the solution $Y*$, when $X= (x_1,\ldots, x_n)$ is a data matrix of independent columns and $\phi(X)(y)$ writes as a sum $\frac{1}{n}\sum_{i=1}n h_i(x_iTY)$. That allows to describe the behavior and performance (e.g., generalization error) of a wide variety of machine learning classifiers.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.