Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Concentration of Measure Framework to study convex problems and other implicit formulation problems in machine learning (2010.09877v2)

Published 19 Oct 2020 in math.PR and stat.ML

Abstract: This paper provides a framework to show the concentration of solutions $Y*$ to convex minimizing problem where the objective function $\phi(X)(Y)$ depends on some random vector $X$ satisfying concentration of measure hypotheses. More precisely, the convex problem translates into a contractive fixed point equation that ensure the transmission of the concentration from $X$ to $Y*$. This result is of central interest to characterize many machine learning algorithms which are defined through implicit equations (e.g., logistic regression, lasso, boosting, etc.). Based on our framework, we provide precise estimations for the first moments of the solution $Y*$, when $X= (x_1,\ldots, x_n)$ is a data matrix of independent columns and $\phi(X)(y)$ writes as a sum $\frac{1}{n}\sum_{i=1}n h_i(x_iTY)$. That allows to describe the behavior and performance (e.g., generalization error) of a wide variety of machine learning classifiers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)