Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Twice is enough for dangerous eigenvalues (2010.09710v2)

Published 19 Oct 2020 in math.NA and cs.NA

Abstract: We analyze the stability of a class of eigensolvers that target interior eigenvalues with rational filters. We show that subspace iteration with a rational filter is robust even when an eigenvalue is near a filter's pole. These dangerous eigenvalues contribute to large round-off errors in the first iteration, but are self-correcting in later iterations. For matrices with orthogonal eigenvectors (e.g., real-symmetric or complex Hermitian), two iterations is enough to reduce round-off errors to the order of the unit-round off. In contrast, Krylov methods accelerated by rational filters with fixed poles typically fail to converge to unit round-off accuracy when an eigenvalue is close to a pole. In the context of Arnoldi with shift-and-invert enhancement, we demonstrate a simple restart strategy that recovers full precision in the target eigenpairs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.