Papers
Topics
Authors
Recent
2000 character limit reached

Limit Behavior and the Role of Augmentation in Projected Saddle Flows for Convex Optimization (2010.09496v1)

Published 19 Oct 2020 in math.OC, cs.SY, and eess.SY

Abstract: In this paper, we study the stability and convergence of continuous-time Lagrangian saddle flows to solutions of a convex constrained optimization problem. Convergence of these flows is well-known when the underlying saddle function is either strictly convex in the primal or strictly concave in the dual variables. In this paper, we show convergence under non-strict convexity when a simple, unilateral augmentation term is added. For this purpose, we establish a novel, non-trivial characterization of the limit set of saddle-flow trajectories that allows us to preclude limit cycles. With our presentation we try to unify several existing problem formulations as a projected dynamical system that allows projection of both the primal and dual variables, thus complementing results available in the recent literature.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.