Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LANNS: A Web-Scale Approximate Nearest Neighbor Lookup System (2010.09426v1)

Published 19 Oct 2020 in cs.IR

Abstract: Nearest neighbor search (NNS) has a wide range of applications in information retrieval, computer vision, machine learning, databases, and other areas. Existing state-of-the-art algorithm for nearest neighbor search, Hierarchical Navigable Small World Networks(HNSW), is unable to scale to large datasets of 100M records in high dimensions. In this paper, we propose LANNS, an end-to-end platform for Approximate Nearest Neighbor Search, which scales for web-scale datasets. Library for Large Scale Approximate Nearest Neighbor Search (LANNS) is deployed in multiple production systems for identifying topK ($100 \leq topK \leq 200$) approximate nearest neighbors with a latency of a few milliseconds per query, high throughput of 2.5k Queries Per Second (QPS) on a single node, on large ($\sim$180M data points) high dimensional (50-2048 dimensional) datasets.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.