Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Comprehensive evaluation of no-reference image quality assessment algorithms on KADID-10k database (2010.09414v2)

Published 19 Oct 2020 in eess.IV and cs.CV

Abstract: The main goal of objective image quality assessment is to devise computational, mathematical models which are able to predict perceptual image quality consistently with subjective evaluations. The evaluation of objective image quality assessment algorithms is based on experiments conducted on publicly available benchmark databases. In this study, our goal is to give a comprehensive evaluation about no-reference image quality assessment algorithms, whose original source codes are available online, using the recently published KADID-10k database which is one of the largest available benchmark databases. Specifically, average PLCC, SROCC, and KROCC are reported which were measured over 100 random train-test splits. Furthermore, the database was divided into a train (appx. 80\% of images) and a test set (appx. 20% of images) with respect to the reference images. So no semantic content overlap was between these two sets. Our evaluation results may be helpful to obtain a clear understanding about the status of state-of-the-art no-reference image quality assessment methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)