Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Evaluating the Safety of Deep Reinforcement Learning Models using Semi-Formal Verification (2010.09387v1)

Published 19 Oct 2020 in cs.AI

Abstract: Groundbreaking successes have been achieved by Deep Reinforcement Learning (DRL) in solving practical decision-making problems. Robotics, in particular, can involve high-cost hardware and human interactions. Hence, scrupulous evaluations of trained models are required to avoid unsafe behaviours in the operational environment. However, designing metrics to measure the safety of a neural network is an open problem, since standard evaluation parameters (e.g., total reward) are not informative enough. In this paper, we present a semi-formal verification approach for decision-making tasks, based on interval analysis, that addresses the computational demanding of previous verification frameworks and design metrics to measure the safety of the models. Our method obtains comparable results over standard benchmarks with respect to formal verifiers, while drastically reducing the computation time. Moreover, our approach allows to efficiently evaluate safety properties for decision-making models in practical applications such as mapless navigation for mobile robots and trajectory generation for manipulators.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.