Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Evaluating the Safety of Deep Reinforcement Learning Models using Semi-Formal Verification (2010.09387v1)

Published 19 Oct 2020 in cs.AI

Abstract: Groundbreaking successes have been achieved by Deep Reinforcement Learning (DRL) in solving practical decision-making problems. Robotics, in particular, can involve high-cost hardware and human interactions. Hence, scrupulous evaluations of trained models are required to avoid unsafe behaviours in the operational environment. However, designing metrics to measure the safety of a neural network is an open problem, since standard evaluation parameters (e.g., total reward) are not informative enough. In this paper, we present a semi-formal verification approach for decision-making tasks, based on interval analysis, that addresses the computational demanding of previous verification frameworks and design metrics to measure the safety of the models. Our method obtains comparable results over standard benchmarks with respect to formal verifiers, while drastically reducing the computation time. Moreover, our approach allows to efficiently evaluate safety properties for decision-making models in practical applications such as mapless navigation for mobile robots and trajectory generation for manipulators.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.