Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Properties and Optimization of Information-theoretic Privacy Watchdog (2010.09367v1)

Published 19 Oct 2020 in cs.IT and math.IT

Abstract: We study the problem of privacy preservation in data sharing, where $S$ is a sensitive variable to be protected and $X$ is a non-sensitive useful variable correlated with $S$. Variable $X$ is randomized into variable $Y$, which will be shared or released according to $p_{Y|X}(y|x)$. We measure privacy leakage by \emph{information privacy} (also known as \emph{log-lift} in the literature), which guarantees mutual information privacy and differential privacy (DP). Let $\Xepsc \subseteq \X$ contain elements n the alphabet of $X$ for which the absolute value of log-lift (abs-log-lift for short) is greater than a desired threshold $\eps$. When elements $x\in \Xepsc$ are randomized into $y\in \Y$, we derive the best upper bound on the abs-log-lift across the resultant pairs $(s,y)$. We then prove that this bound is achievable via an \emph{$X$-invariant} randomization $p(y|x) = R(y)$ for $x,y\in\Xepsc$. However, the utility measured by the mutual information $I(X;Y)$ is severely damaged in imposing a strict upper bound $\eps$ on the abs-log-lift. To remedy this and inspired by the probabilistic ($\eps$, $\delta$)-DP, we propose a relaxed ($\eps$, $\delta$)-log-lift framework. To achieve this relaxation, we introduce a greedy algorithm which exempts some elements in $\Xepsc$ from randomization, as long as their abs-log-lift is bounded by $\eps$ with probability $1-\delta$. Numerical results demonstrate efficacy of this algorithm in achieving a better privacy-utility tradeoff.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.