Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A novel method for inference of chemical compounds with prescribed topological substructures based on integer programming (2010.09203v4)

Published 29 Sep 2020 in cs.CE and math.CO

Abstract: Analysis of chemical graphs is becoming a major research topic in computational molecular biology due to its potential applications to drug design. One of the major approaches in such a study is inverse quantitative structure activity/property relationships (inverse QSAR/QSPR) analysis, which is to infer chemical structures from given chemical activities/properties. Recently, a novel framework has been proposed for inverse QSAR/QSPR using both artificial neural networks (ANN) and mixed integer linear programming (MILP). This method consists of a prediction phase and an inverse prediction phase. In the first phase, a feature vector $f(G)$ of a chemical graph $G$ is introduced and a prediction function $\psi_{\mathcal{N}}$ on a chemical property $\pi$ is constructed with an ANN $\mathcal{N}$. In the second phase, given a target value $y*$ of the chemical property $\pi$, a feature vector $x*$ is inferred by solving an MILP formulated from the trained ANN $\mathcal{N}$ so that $\psi_{\mathcal{N}}(x*)$ is equal to $y*$ and then a set of chemical structures $G*$ such that $f(G*)= x*$ is enumerated by a graph enumeration algorithm. The framework has been applied to chemical compounds with a rather abstract topological structure such as acyclic or monocyclic graphs and graphs with a specified polymer topology with cycle index up to 2. In this paper, we propose a new flexible modeling method to the framework so that we can specify a topological substructure of graphs and a partial assignment of chemical elements and bond-multiplicity to a target graph.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube