Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Near-Linear-Time Algorithms for Dense Subset Sum (2010.09096v1)

Published 18 Oct 2020 in cs.DS and cs.DM

Abstract: In the Subset Sum problem we are given a set of $n$ positive integers $X$ and a target $t$ and are asked whether some subset of $X$ sums to $t$. Natural parameters for this problem that have been studied in the literature are $n$ and $t$ as well as the maximum input number $\rm{mx}_X$ and the sum of all input numbers $\Sigma_X$. In this paper we study the dense case of Subset Sum, where all these parameters are polynomial in $n$. In this regime, standard pseudo-polynomial algorithms solve Subset Sum in polynomial time $n{O(1)}$. Our main question is: When can dense Subset Sum be solved in near-linear time $\tilde{O}(n)$? We provide an essentially complete dichotomy by designing improved algorithms and proving conditional lower bounds, thereby determining essentially all settings of the parameters $n,t,\rm{mx}_X,\Sigma_X$ for which dense Subset Sum is in time $\tilde{O}(n)$. For notational convenience we assume without loss of generality that $t \ge \rm{mx}_X$ (as larger numbers can be ignored) and $t \le \Sigma_X/2$ (using symmetry). Then our dichotomy reads as follows: - By reviving and improving an additive-combinatorics-based approach by Galil and Margalit [SICOMP'91], we show that Subset Sum is in near-linear time $\tilde{O}(n)$ if $t \gg \rm{mx}_X \Sigma_X/n2$. - We prove a matching conditional lower bound: If Subset Sum is in near-linear time for any setting with $t \ll \rm{mx}_X \Sigma_X/n2$, then the Strong Exponential Time Hypothesis and the Strong k-Sum Hypothesis fail. We also generalize our algorithm from sets to multi-sets, albeit with non-matching upper and lower bounds.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.