On Near-Linear-Time Algorithms for Dense Subset Sum (2010.09096v1)
Abstract: In the Subset Sum problem we are given a set of $n$ positive integers $X$ and a target $t$ and are asked whether some subset of $X$ sums to $t$. Natural parameters for this problem that have been studied in the literature are $n$ and $t$ as well as the maximum input number $\rm{mx}_X$ and the sum of all input numbers $\Sigma_X$. In this paper we study the dense case of Subset Sum, where all these parameters are polynomial in $n$. In this regime, standard pseudo-polynomial algorithms solve Subset Sum in polynomial time $n{O(1)}$. Our main question is: When can dense Subset Sum be solved in near-linear time $\tilde{O}(n)$? We provide an essentially complete dichotomy by designing improved algorithms and proving conditional lower bounds, thereby determining essentially all settings of the parameters $n,t,\rm{mx}_X,\Sigma_X$ for which dense Subset Sum is in time $\tilde{O}(n)$. For notational convenience we assume without loss of generality that $t \ge \rm{mx}_X$ (as larger numbers can be ignored) and $t \le \Sigma_X/2$ (using symmetry). Then our dichotomy reads as follows: - By reviving and improving an additive-combinatorics-based approach by Galil and Margalit [SICOMP'91], we show that Subset Sum is in near-linear time $\tilde{O}(n)$ if $t \gg \rm{mx}_X \Sigma_X/n2$. - We prove a matching conditional lower bound: If Subset Sum is in near-linear time for any setting with $t \ll \rm{mx}_X \Sigma_X/n2$, then the Strong Exponential Time Hypothesis and the Strong k-Sum Hypothesis fail. We also generalize our algorithm from sets to multi-sets, albeit with non-matching upper and lower bounds.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.