Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Poisoned classifiers are not only backdoored, they are fundamentally broken (2010.09080v2)

Published 18 Oct 2020 in cs.LG and cs.CR

Abstract: Under a commonly-studied backdoor poisoning attack against classification models, an attacker adds a small trigger to a subset of the training data, such that the presence of this trigger at test time causes the classifier to always predict some target class. It is often implicitly assumed that the poisoned classifier is vulnerable exclusively to the adversary who possesses the trigger. In this paper, we show empirically that this view of backdoored classifiers is incorrect. We describe a new threat model for poisoned classifier, where one without knowledge of the original trigger, would want to control the poisoned classifier. Under this threat model, we propose a test-time, human-in-the-loop attack method to generate multiple effective alternative triggers without access to the initial backdoor and the training data. We construct these alternative triggers by first generating adversarial examples for a smoothed version of the classifier, created with a procedure called Denoised Smoothing, and then extracting colors or cropped portions of smoothed adversarial images with human interaction. We demonstrate the effectiveness of our attack through extensive experiments on high-resolution datasets: ImageNet and TrojAI. We also compare our approach to previous work on modeling trigger distributions and find that our method are more scalable and efficient in generating effective triggers. Last, we include a user study which demonstrates that our method allows users to easily determine the existence of such backdoors in existing poisoned classifiers. Thus, we argue that there is no such thing as a secret backdoor in poisoned classifiers: poisoning a classifier invites attacks not just by the party that possesses the trigger, but from anyone with access to the classifier.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com