Papers
Topics
Authors
Recent
2000 character limit reached

Question Answering over Knowledge Base using Language Model Embeddings (2010.08883v1)

Published 17 Oct 2020 in cs.CL and cs.IR

Abstract: Knowledge Base, represents facts about the world, often in some form of subsumption ontology, rather than implicitly, embedded in procedural code, the way a conventional computer program does. While there is a rapid growth in knowledge bases, it poses a challenge of retrieving information from them. Knowledge Base Question Answering is one of the promising approaches for extracting substantial knowledge from Knowledge Bases. Unlike web search, Question Answering over a knowledge base gives accurate and concise results, provided that natural language questions can be understood and mapped precisely to an answer in the knowledge base. However, some of the existing embedding-based methods for knowledge base question answering systems ignore the subtle correlation between the question and the Knowledge Base (e.g., entity types, relation paths, and context) and suffer from the Out Of Vocabulary problem. In this paper, we focused on using a pre-trained LLM for the Knowledge Base Question Answering task. Firstly, we used Bert base uncased for the initial experiments. We further fine-tuned these embeddings with a two-way attention mechanism from the knowledge base to the asked question and from the asked question to the knowledge base answer aspects. Our method is based on a simple Convolutional Neural Network architecture with a Multi-Head Attention mechanism to represent the asked question dynamically in multiple aspects. Our experimental results show the effectiveness and the superiority of the Bert pre-trained LLM embeddings for question answering systems on knowledge bases over other well-known embedding methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.