Papers
Topics
Authors
Recent
2000 character limit reached

Finding Physical Adversarial Examples for Autonomous Driving with Fast and Differentiable Image Compositing (2010.08844v2)

Published 17 Oct 2020 in cs.CV, cs.AI, and cs.LG

Abstract: There is considerable evidence that deep neural networks are vulnerable to adversarial perturbations applied directly to their digital inputs. However, it remains an open question whether this translates to vulnerabilities in real systems. For example, an attack on self-driving cars would in practice entail modifying the driving environment, which then impacts the video inputs to the car's controller, thereby indirectly leading to incorrect driving decisions. Such attacks require accounting for system dynamics and tracking viewpoint changes. We propose a scalable approach for finding adversarial modifications of a simulated autonomous driving environment using a differentiable approximation for the mapping from environmental modifications (rectangles on the road) to the corresponding video inputs to the controller neural network. Given the parameters of the rectangles, our proposed differentiable mapping composites them onto pre-recorded video streams of the original environment, accounting for geometric and color variations. Moreover, we propose a multiple trajectory sampling approach that enables our attacks to be robust to a car's self-correcting behavior. When combined with a neural network-based controller, our approach allows the design of adversarial modifications through end-to-end gradient-based optimization. Using the Carla autonomous driving simulator, we show that our approach is significantly more scalable and far more effective at identifying autonomous vehicle vulnerabilities in simulation experiments than a state-of-the-art approach based on Bayesian Optimization.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.