Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Consistency and Coherency Enhanced Story Generation (2010.08822v1)

Published 17 Oct 2020 in cs.CL

Abstract: Story generation is a challenging task, which demands to maintain consistency of the plots and characters throughout the story. Previous works have shown that GPT2, a large-scale LLM, has achieved good performance on story generation. However, we observe that several serious issues still exist in the stories generated by GPT2 which can be categorized into two folds: consistency and coherency. In terms of consistency, on one hand, GPT2 cannot guarantee the consistency of the plots explicitly. On the other hand, the generated stories usually contain coreference errors. In terms of coherency, GPT2 does not take account of the discourse relations between sentences of stories directly. To enhance the consistency and coherency of the generated stories, we propose a two-stage generation framework, where the first stage is to organize the story outline which depicts the story plots and events, and the second stage is to expand the outline into a complete story. Therefore the plots consistency can be controlled and guaranteed explicitly. In addition, coreference supervision signals are incorporated to reduce coreference errors and improve the coreference consistency. Moreover, we design an auxiliary task of discourse relation modeling to improve the coherency of the generated stories. Experimental results on a story dataset show that our model outperforms the baseline approaches in terms of both automatic metrics and human evaluation.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.