Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Banzhaf and Shapley-Shubik Fixed Points and Divisor Voting Systems (2010.08672v1)

Published 17 Oct 2020 in math.NT and cs.GT

Abstract: The Banzhaf and Shapley-Shubik power indices were first introduced to measure the power of voters in a weighted voting system. Given a weighted voting system, the fixed point of such a system is found by continually reassigning each voter's weight with its power index until the system can no longer be changed by the operation. We characterize all fixed points under the Shapley-Shubik power index of the form $(a,b,\ldots,b)$ and give an algebraic equation which can verify in principle whether a point of this form is fixed for Banzhaf; we also generate Shapley-Shubik fixed classes of the form $(a,a,b,\ldots,b)$. We also investigate the indices of divisor voting systems of abundant numbers and prove that the Banzhaf and Shapley-Shubik indices differ for some cases.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.