Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Minimax Quasi-Bayesian estimation in sparse canonical correlation analysis via a Rayleigh quotient function (2010.08627v3)

Published 16 Oct 2020 in stat.ML, cs.LG, stat.CO, and stat.ME

Abstract: Canonical correlation analysis (CCA) is a popular statistical technique for exploring relationships between datasets. In recent years, the estimation of sparse canonical vectors has emerged as an important but challenging variant of the CCA problem, with widespread applications. Unfortunately, existing rate-optimal estimators for sparse canonical vectors have high computational cost. We propose a quasi-Bayesian estimation procedure that not only achieves the minimax estimation rate, but also is easy to compute by Markov Chain Monte Carlo (MCMC). The method builds on Tan et al. (2018) and uses a re-scaled Rayleigh quotient function as the quasi-log-likelihood. However, unlike Tan et al. (2018), we adopt a Bayesian framework that combines this quasi-log-likelihood with a spike-and-slab prior to regularize the inference and promote sparsity. We investigate the empirical behavior of the proposed method on both continuous and truncated data, and we demonstrate that it outperforms several state-of-the-art methods. As an application, we use the proposed methodology to maximally correlate clinical variables and proteomic data for better understanding the Covid-19 disease.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.