Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Accurate Low-Order Discretization Scheme for the Identity Operator in the Magnetic Field and Combined Field Integral Equations (2010.08436v2)

Published 16 Oct 2020 in math.NA, cs.NA, and physics.comp-ph

Abstract: A new low-order discretization scheme for the identity operator in the magnetic field integral equation (MFIE) is discussed. Its concept is derived from the weak-form representation of combined sources which are discretized with Rao-Wilton-Glisson (RWG) functions. The resulting MFIE overcomes the accuracy problem of the classical MFIE while it maintains fast iterative solver convergence. The improvement in accuracy is verified with a mesh refinement analysis and with near- and far-field scattering results. Furthermore, simulation results for a combined field integral equation (CFIE) involving the new MFIE show that this CFIE is interior-resonance free and well-conditioned like the classical CFIE, but also accurate as the EFIE.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.