Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Accurate Low-Order Discretization Scheme for the Identity Operator in the Magnetic Field and Combined Field Integral Equations (2010.08436v2)

Published 16 Oct 2020 in math.NA, cs.NA, and physics.comp-ph

Abstract: A new low-order discretization scheme for the identity operator in the magnetic field integral equation (MFIE) is discussed. Its concept is derived from the weak-form representation of combined sources which are discretized with Rao-Wilton-Glisson (RWG) functions. The resulting MFIE overcomes the accuracy problem of the classical MFIE while it maintains fast iterative solver convergence. The improvement in accuracy is verified with a mesh refinement analysis and with near- and far-field scattering results. Furthermore, simulation results for a combined field integral equation (CFIE) involving the new MFIE show that this CFIE is interior-resonance free and well-conditioned like the classical CFIE, but also accurate as the EFIE.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.