Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Pose And Joint-Aware Action Recognition (2010.08164v2)

Published 16 Oct 2020 in cs.CV

Abstract: Recent progress on action recognition has mainly focused on RGB and optical flow features. In this paper, we approach the problem of joint-based action recognition. Unlike other modalities, constellation of joints and their motion generate models with succinct human motion information for activity recognition. We present a new model for joint-based action recognition, which first extracts motion features from each joint separately through a shared motion encoder before performing collective reasoning. Our joint selector module re-weights the joint information to select the most discriminative joints for the task. We also propose a novel joint-contrastive loss that pulls together groups of joint features which convey the same action. We strengthen the joint-based representations by using a geometry-aware data augmentation technique which jitters pose heatmaps while retaining the dynamics of the action. We show large improvements over the current state-of-the-art joint-based approaches on JHMDB, HMDB, Charades, AVA action recognition datasets. A late fusion with RGB and Flow-based approaches yields additional improvements. Our model also outperforms the existing baseline on Mimetics, a dataset with out-of-context actions.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.