Papers
Topics
Authors
Recent
2000 character limit reached

ALdataset: a benchmark for pool-based active learning (2010.08161v1)

Published 16 Oct 2020 in cs.LG

Abstract: Active learning (AL) is a subfield of ML in which a learning algorithm could achieve good accuracy with less training samples by interactively querying a user/oracle to label new data points. Pool-based AL is well-motivated in many ML tasks, where unlabeled data is abundant, but their labels are hard to obtain. Although many pool-based AL methods have been developed, the lack of a comparative benchmarking and integration of techniques makes it difficult to: 1) determine the current state-of-the-art technique; 2) evaluate the relative benefit of new methods for various properties of the dataset; 3) understand what specific problems merit greater attention; and 4) measure the progress of the field over time. To conduct easier comparative evaluation among AL methods, we present a benchmark task for pool-based active learning, which consists of benchmarking datasets and quantitative metrics that summarize overall performance. We present experiment results for various active learning strategies, both recently proposed and classic highly-cited methods, and draw insights from the results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.